
Type and Effect Systems Lecture Notes
DANIEL SAINATI

1 INTRO
We all should have a decent intuition for what a side effect is: it’s anything your program might do

to the environment or world that is not captured in the type of the value it returns. Some examples

of effects in real world languages include:

● I/O or file handling

● Reading or writing from memory

● Throwing an exception

● Nondeterminism

● Time passing

● Non-termination

2 SLTCWITH EFFECTS
To see how we can model side effects using types, we’re going to add a new feature to the simply

typed lambda calculus: tick, which is going to represent the program using an amount of time in

the real world.

We extend the basic SLTC with some new syntax to support ticking, along with booleans and if

statements to make things a bit more interesting:

𝑒 ∶∶= 𝑥 ⋃︀ true ⋃︀ false ⋃︀ if 𝑒 then 𝑒 else 𝑒 ⋃︀ 𝜆𝑥 ∶ 𝜏 .𝑒 ⋃︀ 𝑒𝑒 ⋃︀ tick ⋃︀ 𝑒;𝑒

We also need some types:

𝜏 ∶∶= bool ⋃︀ unit ⋃︀ 𝜏 → 𝜏

Here we are going to use unit as the type of tick, as it does not produce a value that we care
about. However, this is not the only thing tick does, in addition to producing a dummy unit value,

it also consumes time. What if we’d like to statically know how much time a program will take to

run (or specifically, how many times it will tick)? As it turns out, we won’t be able say precisely

how many ticks a program will use statically, but we can place an upper bound on this number

with an effect system.

Define an effect type 𝜙 , which in this case will be a natural number. We’ll also want a way to com-

bine effects (+) and compare effects (≤), which in this case will be the corresponding operations on

the naturals. However, in a system designed to track other effects you can imagine more interesting

versions of these operators (e.g. for exceptions you might have your effect type be a set of possible

error kinds, + be defined as union and ≤ be set inclusion). What’s important is that we can define

an algebra over our effects, although this should not be confused with “algebraic effects", which

means something different.

Now we want to work our effects into the type system. What will this look like? Our typing

judgment for the original SLTC looked like Γ ⊢ 𝑒 ∶ 𝜏 , which only gave us information about the

type of the value produced by evaluating the expression. We also want information now about the

effects that evaluation will have, so we can achieve this by annotating the judgment with effects:



2 Daniel Sainati

Γ ⊢ 𝑒 ∶𝜙 𝜏 .

Let’s start with the actual effect-producing expression: tick.

T-Tick
Γ ⊢ tick ∶1 unit

This tells us that the tick expression has type unit, and produces 1 tick effect when you run it.

Pretty simple.

What about sequencing?

Γ ⊢ 𝑒1 ∶
𝜙1 unit Γ ⊢ 𝑒2 ∶

𝜙2 𝜏T-Seq
Γ ⊢ 𝑒1;𝑒2 ∶

𝜙1+𝜙2 𝜏

This is also straightforward: sequencing two expressions adds together their effects, so e.g. tick;tick
will have have effect 2 and type unit.

Some more simple rules:

T-True
Γ ⊢ true ∶0 bool

T-False
Γ ⊢ false ∶0 bool

𝑥 ∶ 𝜏 ∈ ΓT-Var
Γ ⊢ 𝑥 ∶0 𝜏

Primitive values and variable uses have no effect, that is, they are “pure".

How about if statements? Well, unlike sequencing, which always evaluates both of its constituent

expressions, a conditional will only choose one of its two arms to evaluate. Adding together the

effects of these branches would be an unnecessarily conservative overestimate of the effects. Instead,

we can use our ≤ operator to choose the greater of the two branches:

Γ ⊢ 𝑒1 ∶
𝜙1 ∶ bool Γ ⊢ 𝑒2 ∶

𝜙2 ∶ 𝜏 Γ ⊢ 𝑒3 ∶
𝜙3 ∶ 𝜏

T-If
Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ∶

𝜙1+max(𝜙2,𝜙3) 𝜏

Now we come to functions. How might we type check a lambda expression in this system?

Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶
𝜙 𝜏2T-Lam-Wrong

Γ ⊢ 𝜆𝑥 ∶ 𝜏1.𝑒 ∶
0 𝜏1 → 𝜏2



Type and Effect Systems Lecture Notes 3

The body of the function will use some effect when it is evaluated, but the function itself is not

evaluated until it is applied (in a CBV or CBN system at least). So, as written here, we lose informa-

tion about the effects of the body, and won’t have any place to recover them when applying the

function elsewhere. To handle this, we modify the arrow type to “store" the effects of the body:

Γ, 𝑥 ∶ 𝜏1 ⊢ 𝑒 ∶
𝜙 𝜏2T-Lam

Γ ⊢ 𝜆𝑥 ∶ 𝜏1 .𝑒 ∶
0 𝜏1

𝜙
Ð→ 𝜏2

And now, application:

Γ ⊢ 𝑒1 ∶
𝜙1 𝜏1

𝜙3

Ð→ 𝜏2 Γ ⊢ 𝑒2 ∶
𝜙2 𝜏1T-App

Γ ⊢ 𝑒1𝑒2 ∶
𝜙1+𝜙2+𝜙3 𝜏2

This way the application rule takes into account the effects not only of evaluating the argument

and the function, but also of evaluating the body of the function with the supplied argument.

3 EFFECT SOUNDNESS
What properties might we care to prove about this system? The obvious type soundness and

normalization properties, sure, but we may also care to show that the system actually has the effect

property we described earlier. That is, we’d like it to be the case that the effects described by the

type system are actually an upper bound on the side effects that occur during evaluation. To be able

to talk about this, we first need to be able to formally describe “the side effects that occur during

evaluation". We achieve this by instrumenting the semantics for the SLTC with tracking of effects.

We define our terminal values and environments:

𝑣 ∶∶= true ⋃︀ false ⋃︀ () ⋃︀ ⎷𝜌, 𝜆𝑥 .𝑒⌄

𝜌 ∶∶= ⋅ ⋃︀ 𝑥 ↦ 𝑣, 𝜌

The ⎷𝜌, 𝜆𝑥 .𝑒⌄ denotes a closure capturing an environment 𝜌 ; this will be the result of evaluating a

lambda expression. Now, the big step semantics:

E-True
𝜌 ⊢ true ⇓0 true

E-False
𝜌 ⊢ false ⇓0 false

𝑥 ↦ 𝑣 ∈ 𝜌
E-Var

𝜌 ⊢ 𝑥 ⇓0 𝑣

E-Tick
𝜌 ⊢ tick ⇓1 ()

𝜌 ⊢ 𝑒1 ⇓
𝜙1 () 𝜌 ⊢ 𝑒2 ⇓

𝜙2 𝑣
E-Seq

Γ ⊢ 𝑒1;𝑒2 ⇓
𝜙1+𝜙2 𝑣

𝜌 ⊢ 𝑒1 ⇓
𝜙1 ∶ true 𝜌 ⊢ 𝑒2 ⇓

𝜙2 ∶ 𝑣
E-If-True

𝜌 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇓
𝜙1+𝜙2 𝑣



4 Daniel Sainati

𝜌 ⊢ 𝑒1 ⇓
𝜙1 ∶ false 𝜌 ⊢ 𝑒3 ⇓

𝜙2 ∶ 𝑣
E-If-False

𝜌 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇓
𝜙1+𝜙2 𝑣

E-Lam
𝜌 ⊢ 𝜆𝑥 ∶ 𝜏 .𝑒 ⇓0 ⎷𝜌, 𝜆𝑥 .𝑒⌄

𝜌 ⊢ 𝑒1 ∶
𝜙1 ⎷𝜌 ′, 𝜆𝑥 .𝑒3⌄ 𝜌 ⊢ 𝑒2 ∶

𝜙2 𝑣 ′ 𝜌 ′, 𝑥 ↦ 𝑣 ′ ⊢ 𝑒3 ∶
𝜙3 𝑣

E-App
𝜌 ⊢ 𝑒1𝑒2 ∶

𝜙1+𝜙2+𝜙3 𝑣

Notice how the effect annotations on the semantics mirror those on the typing judgment.

How now to prove effect soundness? Since we are using a big-step semantics, we will prove

soundness along with normalization together (big-step semantics cannot express non-terminating

reduction sequences by nature, so proving that a reduction sequence exists for every well-typed

term also entails proving that every well-typed term terminates). Thus, we will use a logical relation

(which will look quite similar to the hereditary termination relation [2] we used for the regular

SLTC).

JboolK = {true, false}
JunitK = {()}

J𝜏1
𝜙
Ð→ 𝜏2K = {⎷𝜌, 𝜆𝑥 .𝑒⌄ ⋃︀ ∀𝑣 ∈ J𝜏1K, (𝜌, 𝑥 ↦ 𝑣) ⊢ 𝑒 ⇓𝜙

′

𝑣 ′ ∧ 𝜙 ′ ≤ 𝜙 ∧ 𝑣 ′ ∈ J𝜏2K}

The only interesting case in this definition is the arrow type case, which is going to require that

evaluating the body of the function uses at most the effects annotated on the arrow type. We define

our notion of semantic well-typedness:

Γ ⊧ 𝜌 ≜ 𝑥 ∶ 𝜏 ∈ Γ Ô⇒ 𝑥 ↦ 𝑣 ∈ 𝜌 ∧ 𝑣 ∈ J𝜏K

Γ ⊧ 𝑒 ∶𝜙 𝜏 ≜ ∀𝜌, Γ ⊧ 𝜌 Ô⇒ ∃𝑣,𝜙 ′ such that 𝜌 ⊢ 𝑒 ⇓𝜙
′

𝑣 ∧ 𝜙 ′ ≤ 𝜙 ∧ 𝑣 ∈ J𝜏K

Notice that we don’t attempt to promise that evaluation will have exactly the effects specified in

the semantic typing judgment, as branching execution in the if statement prevents us from doing

so. Instead we require that evaluation have at most the effects specified in the type.

Note also that the 𝜌 here is performing a dual duty as both the execution environment for the big

step semantics and also the closing substitution for the logical relation. This is typical for logical

relations for big step semantics.

Now, let’s prove the fundamental lemma:

Lemma 3.1 (Fundamental Lemma: Effect Soundness). If Γ ⊢ 𝑒 ∶𝜙 𝜏 , then Γ ⊧ 𝑒 ∶𝜙 𝜏 .

Proof. As one might expect, we prove this by induction on the typing derivation of Γ ⊢ 𝑒 ∶𝜙 𝜏 .



Type and Effect Systems Lecture Notes 5

● Case T-Var:
In this case Γ ⊢ 𝑥 ∶0 𝜏 , and we would like to show Γ ⊧ 𝑥 ∶0 𝜏 . Unfolding the definition, we can

assume we have some 𝜌 such that Γ ⊧ 𝜌 , and want to show that 𝜌 ⊢ 𝑥 ⇓𝜙
′

𝑣 ∧𝜙 ′ ≤ 0∧𝑣 ∈ J𝜏K
for some 𝑣 and 𝜙 ′. We can just choose 𝜙 ′ to be 0 and 𝑣 to be 𝜌(𝑥), since our assumption

that Γ ⊧ 𝜌 tells us that 𝑥 ↦ 𝑣 ∈ 𝜌 ∧ 𝑣 ∈ J𝜏K.
● Case T-True:
In this case Γ ⊢ true ∶0 bool, and we would like to show Γ ⊧ true ∶0 bool. Unfolding

the definition, this requires us to prove 𝜌 ⊢ true ⇓𝜙
′

𝑣 ∧ 𝜙 ′ ≤ 0 ∧ 𝑣 ∈ JboolK. The case is
immediate with a choice of 0 for 𝜙 ′ and true for 𝑣 .

● Case T-False:
This case is identical to the true case, just with false chosen for 𝑣 .

● Case T-Tick:
In this case, Γ ⊢ tick ∶1 unit, and we would like to show Γ ⊧ tick ∶1 unit. This requires

us to show 𝜌 ⊢ tick ⇓𝜙
′

𝑣 ∧ 𝜙 ′ ≤ 1 ∧ 𝑣 ∈ JunitK. This is immediate with a choice of 1 for 𝜙 ′

and () for 𝑣 .

● Case T-Seq:
In first of our inductive cases, we have Γ ⊢ 𝑒1;𝑒2 ∶

𝜙1+𝜙2 𝜏 . Our IHs tell us that Γ ⊧ 𝑒1 ∶
𝜙1 unit

and Γ ⊧ 𝑒2 ∶
𝜙2 𝜏 , and we would like to show Γ ⊧ 𝑒1;𝑒2 ∶

𝜙1+𝜙2 𝜏 . Unrolling definitions, we can

assume we have a 𝜌 such that Γ ⊧ 𝜌 , which allows us to use our IHs to derive that there

is some 𝜙 ′
1
and 𝑣 ′

1
such that 𝜌 ⊢ 𝑒1 ⇓

𝜙
′

1 𝑣 ′
1
∧ 𝜙 ′

1
≤ 𝜙1 ∧ 𝑣

′
1
∈ JunitK, and some 𝜙 ′

2
and 𝑣 ′

2
such

that 𝜌 ⊢ 𝑒2 ⇓
𝜙
′

2 𝑣 ′
2
∧ 𝜙 ′

2
≤ 𝜙2 ∧ 𝑣

′
2
∈ J𝜏K.

From the definition of our logical relation, we can see that 𝑣 ′
1
∈ JunitK tells us that 𝑣 ′

1
must

be (). Our goal in this case is to show that 𝜌 ⊢ 𝑒1;𝑒2 ∶
𝜙
′

𝑣 ∧𝜙 ′ ≤ 𝜙1 +𝜙2 ∧ 𝑣 ∈ J𝜏K. We choose

𝜙 ′ = 𝜙 ′
1
+ 𝜙 ′

2
and 𝑣 = 𝑣 ′

2
, which gives us the derivation we want using the E-Seq rule, along

with inclusion in the logical relation. We then just need to show that 𝜙 ′
1
+ 𝜙 ′

2
≤ 𝜙1 + 𝜙2,

which is trivial to show in the algebra of the naturals that we chose for these effects, but in

general should also hold for arbitrary other effect algebras we might care about.

● Case T-If:
In this case we have Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ∶

𝜙1+max(𝜙2,𝜙3) 𝜏 , and our IHs give us

that Γ ⊧ 𝑒1 ∶
𝜙1 ∶ bool, Γ ⊧ 𝑒2 ∶

𝜙2 ∶ 𝜏 , and Γ ⊧ 𝑒3 ∶
𝜙3 ∶ 𝜏 . We would like to show that Γ ⊧

if 𝑒1 then 𝑒2 else 𝑒3 ∶
𝜙1+max(𝜙2,𝜙3) 𝜏 .

Unrolling definitions, we have some 𝜌 such that Γ ⊧ 𝜌 , which allows us to use our first IH to

derive that (after some additional simplification), that 𝜌 ⊢ 𝑒1 ⇓
𝜙
′

1 𝑣 ′
1
∧ 𝜙 ′

1
≤ 𝜙1 ∧ 𝑣

′
1
∈ JboolK

(and thus that 𝑣 ′
1
is either true or false). We must consider both cases. Let’s start with the

case where 𝑣 ′
1
is true.

In this case, we can use another of our IHs to derive that 𝜌 ⊢ 𝑒2 ⇓
𝜙
′

2 𝑣 ′
2
∧ 𝜙 ′

2
≤ 𝜙2 ∧ 𝑣

′
2
∈ J𝜏K.

Our goal is to show that 𝜌 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ⇓
𝜙
′

𝑣 ∧𝜙 ′ ≤ 𝜙1+max(𝜙2, 𝜙3)∧𝑣 ∈ J𝜏K.
Choose 𝜙 ′ to be 𝜙 ′

1
+ 𝜙 ′

2
, and 𝑣 to be 𝑣 ′

2
. The rest of the case follows directly from the usage

of the E-If-True rule and some simple algebra. The case where 𝑣 ′
1
is false is symmetric,

using the E-If-False rule.
● Case T-Lam:

In this case, we have Γ ⊢ 𝜆𝑥 ∶ 𝜏1.𝑒 ∶
0 𝜏1

𝜙
Ð→ 𝜏2, and our IH gives us that Γ, 𝑥 ∶ 𝜏1 ⊧ 𝑒 ∶

𝜙 𝜏2. We

would like to show Γ ⊧ 𝜆𝑥 ∶ 𝜏1.𝑒 ∶
0 𝜏1

𝜙
Ð→ 𝜏2.

Unrolling our definitions, we assume we have a 𝜌 such that Γ ⊧ 𝜌 , and we want to show that

there is some 𝜙 ′ and 𝑣 such that 𝜌 ⊢ 𝜆𝑥 ∶ 𝜏1.𝑒 ⇓
𝜙
′

𝑣 ∧𝜙 ′ ≤ 0∧ 𝑣 ∈ J𝜏1
𝜙
Ð→ 𝜏2K. If we choose 𝑣 to



6 Daniel Sainati

be ⎷𝜌, 𝜆𝑥 .𝑒3⌄ and𝜙
′
to be 0, the first two components of our goal conjunction are simple, and

we need only now prove that ⎷𝜌, 𝜆𝑥 .𝑒⌄ ∈ J𝜏1
𝜙
Ð→ 𝜏2K. Further unrolling our definitions, we

see that this is equivalent to proving that ∀𝑣 ∈ J𝜏1K, (𝜌, 𝑥 ↦ 𝑣) ⊢ 𝑒 ⇓𝜙
′

𝑣 ′ ∧𝜙 ′ ≤ 𝜙 ∧ 𝑣 ′ ∈ J𝜏2K.
We can prove an easy technical lemma (omitted here) showing that given Γ ⊧ 𝜌 and 𝑣 ∈ J𝜏1K,
then Γ, 𝑥 ∶ 𝜏 ⊧ 𝜌, 𝑥 ↦ 𝑣 . With this result, we can use our IH to derive that there is some 𝑣 ′

and 𝜙 ′ such that (𝜌, 𝑥 ↦ 𝑣) ⊢ 𝑒 ⇓𝜙
′

𝑣 ′ ∧𝜙 ′ ≤ 𝜙 ∧ 𝑣 ′ ∈ J𝜏2K. This is, however, exactly what we

need to show, and so we are done here.

● Case T-App:

In this case we have Γ ⊢ 𝑒1𝑒2 ∶
𝜙1+𝜙2+𝜙3 𝜏2, and our IHs give us Γ ⊧ 𝑒1 ∶

𝜙1 𝜏1
𝜙3

Ð→ 𝜏2 and

Γ ⊧ 𝑒2 ∶
𝜙2 𝜏1. We want to show Γ ⊧ 𝑒1𝑒2 ∶

𝜙1+𝜙2+𝜙3 𝜏2. We start by assuming Γ ⊧ 𝜌 , and want

to show that there is some 𝑣 and 𝜙 ′ such that 𝜌 ⊢ 𝑒1𝑒2 ⇓
𝜙
′

𝑣 ∧ 𝜙 ′ ≤ 𝜙1 + 𝜙2 + 𝜙3 ∧ 𝑣 ∈ J𝜏2K.
We use our assumption that Γ ⊧ 𝜌 and our IHs to derive that there is some 𝑣1 and 𝜙

′
1
such

that 𝜌 ⊢ 𝑒1 ⇓
𝜙
′

1 𝑣1 ∧ 𝜙
′
1
≤ 𝜙1 ∧ 𝑣1 ∈ J𝜏1

𝜙3

Ð→ 𝜏2K, and some 𝑣2 and 𝜙 ′
2
such that 𝜌 ⊢ 𝑒2 ⇓

𝜙
′

2

𝑣2 ∧ 𝜙
′
2
≤ 𝜙2 ∧ 𝑣2 ∈ J𝜏1K.

Unfolding our logical relation definition in the first premise here tells us that 𝑣1 is some

⎷𝜌 ′, 𝜆𝑥 .𝑒′⌄ and that ∀𝑣 ∈ J𝜏1K, (𝜌, 𝑥 ↦ 𝑣) ⊢ 𝑒 ⇓𝜙
′

3 𝑣 ′ ∧ 𝜙 ′
3
≤ 𝜙3 ∧ 𝑣

′ ∈ J𝜏2K. We can use this,

providing 𝑣2 as our 𝑣 here to conclude that (𝜌, 𝑥 ↦ 𝑣2) ⊢ 𝑒 ⇓
𝜙
′

3 𝑣 ′ ∧ 𝜙 ′
3
≤ 𝜙3 ∧ 𝑣

′ ∈ J𝜏2K for
some 𝑣 ′ and 𝜙 ′

3
.

Now, we choose our original 𝑣 and 𝜙 ′ from our goal to be 𝑣 ′ and 𝜙 ′
1
+ 𝜙 ′

2
+ 𝜙 ′

3
, respectively,

which along with our premises, some algebra and the E-App rule, gives us what we need

to complete the case.

□

4 POLYMORPHIC EFFECTS
We’ve proven the correctness of effects for a simply typed language, but there’s something very

unsatisfying about this system. Namely, the types for functions are extremely restrictive. Consider

a function we might wish to write in a system without effects that takes a function and applies it

twice to an input:

twice ≜ 𝜆𝑓 ∶ bool→ bool.𝜆𝑥 ∶ bool.𝑓 (𝑓 𝑥))

This is straightforward in a language without effects, but suppose we wanted to be able to write it

in our effectful language. We would have to choose a specific effect to place on the type of 𝑓 , and

then our definition of twice would only accept input functions that use those effects. For example:

twice2 ≜ 𝜆𝑓 ∶ bool
2

Ð→ bool.𝜆𝑥 ∶ bool.tick; 𝑓 (𝑓 𝑥))

defines a function twice2 with type bool
2

Ð→ bool
0

Ð→ bool
5

Ð→ bool. If we wanted to apply a

function that ticks 3 times twice, we’d have to define a different function (e.g., twice3) that accepts
an 𝑓 with effect 3. That’s bad language design.

We can get around this by introducing effect polymorphism [3, 4]. There are many ways to do this,

but one simple one is to add new syntax (like in System F). We’ll borrow the System F syntax to

highlight the relationship between parametric polymorphism and effect polymorphism.



Type and Effect Systems Lecture Notes 7

𝑒 ∶∶= . . . ⋃︀ ΛΦ.𝑒 ⋃︀ 𝑒(︀𝜙⌋︀

𝜏 ∶∶= . . . ⋃︀ ∀Φ.𝜙𝜏

We use capital Φ to represent an effect variable, while lowercase 𝜙 is a specific effect. Note that just

like the regular arrow type, the new forall type also has a latent effect on it, which makes sense

when we consider the polymorphic abstraction to also suspend computation the same way as a

normal abstraction.

We add new typing rules (again reminiscent of System F). We also extend our typing judgment

with a Δ that tracks in-scope effect variables, so the judgment now looks like Γ ⋃︀ Δ ⊢ 𝑒 ∶𝜙 𝜏 :

Γ ⋃︀ Δ,Φ ⊢ 𝑒 ∶𝜙 𝜏
T-Eff-Lam

Γ ⋃︀ Δ ⊢ ΛΦ.𝑒 ∶0 ∀Φ.𝜙𝜏

Γ ⋃︀ Δ ⊢ 𝑒 ∶𝜙1 ∀Φ.𝜙2𝜏 Φ ∉ 𝐹𝑉 (𝜙1)T-Eff-App
Γ ⋃︀ Δ ⊢ 𝑒(︀𝜙⌋︀ ∶𝜙1+𝜙2(︀Φ↦𝜙⌋︀ 𝜏(︀Φ↦ 𝜙⌋︀

The proof of correctness for this system is more complicated than the simply typed one, but it

draws on many of the same principles, along with some of the techniques used for the logical

relation for System F.

5 EFFECT HANDLERS
It’s also possible that we might wish to be able to interact with effects during evaluation of a

program, rather than just observing them after the fact. One way to accomplish this is with effect
handlers [1], which provide a way to “react" to effects as they happen during execution. These

handlers often have certain algebraic properties, which leads to effects with handlers often being

referred to as “algebraic effects". One can think of this as a generalization of try-catch syntax

from common languages like JavaScript or Python. With that in mind, we can define a language

extension for our calculus:

𝑒 ∶∶= . . . ⋃︀ handle 𝑒 with ℎ

ℎ ∶∶= 𝜙 ⇒ 𝑒,ℎ ⋃︀ _⇒ 𝑒

So, for example, we might define a program:

handle 𝑓 𝑥 with (1⇒ true, 4⇒ false, _⇒ tick;false)

which will return true if 𝑓 ticks once during evaluation, false if it ticks 4 times, and otherwise

will return false and tick once itself.

More practical systems will also reify effects as values that can be interacted with at runtime. One

could also imagine a program that does different things depending on whether a function ticks an

odd or even number of times:



8 Daniel Sainati

handle 𝑓 𝑥 with 𝜙 ⇒ 𝜙%2 = 0

Additionally, in some effect systems (e.g. in one where the effects are exceptions), it might not

make sense to wait for the completion of the handled expression to execute, as these examples

implicitly do. In such cases handlers typically are able to suspend the execution of their handled

expression, and also often come with continuations, expressions to evaluate upon completion of the

effect handler.

REFERENCES
[1] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. 84, 1 (2015), 108–123.

doi:10.1016/j.jlamp.2014.02.001

[2] Robert Harper. 2025. How to (Re)Invent Tait’s Method. https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf

[3] J. M. Lucassen and D. K. Gifford. 1988. Polymorphic effect systems. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL ’88 (San Diego, California, United States). ACM Press, 47–57.

doi:10.1145/73560.73564

[4] Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight Polymorphic Effects. In ECOOP 2012 – Object-Oriented
Programming (Berlin, Heidelberg, 2012), James Noble (Ed.). Springer, 258–282. doi:10.1007/978-3-642-31057-7_13

https://doi.org/10.1016/j.jlamp.2014.02.001
https://www.cs.cmu.edu/~rwh/courses/atpl/pdfs/tait.pdf
https://doi.org/10.1145/73560.73564
https://doi.org/10.1007/978-3-642-31057-7_13

	1 Intro
	2 SLTC with Effects
	3 Effect Soundness
	4 Polymorphic Effects
	5 Effect Handlers
	References

